B 1.
Appendix B

In the following we present the different list types in the archive
'KB-LIST' covering the local elections 1909 to 1966. The list votes variables
in the °KB-ARCHIVE' are bas=d upon single or combined list type votes. The list
labels are reproduced in Daaish because it has not been possible to translate

many of the names into a suitable English.

Tab. B. List type identifications and labels in archive 'XB-LISTY.

(Source: "Statistiske Meddelelser'": various publications containing the local

elections 1909-68).

Folketingspartier og kombinationer af samme (Political parties).

coding List label

value

ol Socialdemokratiet (A)

02 Det radikale Venstre (B)

03 Det konservative Folkeparti, Hejre (C)

04 Venstre, Reformvenstre, Moderate Venstre m.v. (D)
05 Danmarks Retsforbund (E)

06 Socialistisk Folkeparti, Venstreorienteret Samling (F)
o7 Bondeparti (F)

08 Socialistisk Parti (1958) (J)

09 Danmarks kommunistiske Parti (X)

11 D.N.S.A.P. (N)

12 Slesvigsk Parti (&)

13 De Uafhangige (U)

14 Dansk Samling (R)

15 Andre politiske lister i 1937.

16 L.S. og Venstre

17 Erhvervspartiet (1921-25)

18 Socialdemokratiet + Radikale

19 Radikale + Retsforbundet

20 Venstre + Radikale, Venstre + Radikale + Retsforbundet
21 Venstre + Konservetive

22 Socialdemokratiet + Venstre

23 A+B+Dy, A+B+E

24 B+C+D,B+C, B+C+ D+ E

25 A+B+C+D, A+B+C, A+C

26 E+Cy, E+D, E+D+C

Erhvervs- og stillingslister (Occupational lists).

coding List label

value

29 primererhverv
landmandsl., jordejere, gardmend og husmand, hartkornsl., gmd.
og skippere og fiskere, fiskeri og landbrug m.v.

30 gods- og proprietarbrug

31 gardbrug
gardmend, gardejere m.v.

32 husmandsbrug
husmandsl., boelsmend m.v.

1o landbrugernes sammenslutning, L.S.

92 landbrugslister 1937

33 fiskeri og sefart
havneliste, fiskerlejernes liste, sgfart, skippere m.v.

34 landbrug og byerhverv m.v.
gmd. + handv. + husm., gmd. + husm. + neringsdrivende,
landbrugere o3 handlende, landmend og naringsdrivende
fiskere + handverkere + gdrdejere, g&rdm. + enbedsm +
handelsstand, erhverv og gardejere m.v.

35 byerhverv i alminielighed
neringsdrivenie, handel + hdndverk + industri, frie erhverv,
handverkere o3y forretningsdrivende m.v.

36 handverk og industri

37 handel

38 erhvervslister
erhvervsliste

27 danske erhvervslister
dansk landbrugsl., dansk h&ndverksl. m.v.

28 tyske erhvervslis:er
tysk landbrugsl., tysk handelsl m.v.

91 andre erhvervslisier 1937

39 funktionzrer og tjenestemaznd
postbude, hejskoleliste, gendarmeriliste, flyvepladsen,
lzrere, embedsmaend

40 arbejdere

faglige arbejdere, dansk arbejdsmandsforbund, fagforening,
landarbejdere, arbejdere og husmeznd m.v.

Ikke-erhvervsmessige interessegruppelister (Non-occupational interest groups).

coding List label

value

42 indre mission, mission
43 ikke indre mission

44 valgmenighed

45 folkekirken

sognemenighed, hejkirkelig, luthersk mission

52 grundtvigianere

coding List label
value
46 andre religigse lister
methodister, frikirkelig, religies liste, brodremenighed,
baptister, kristelig social
47 afholdslister :
bld kors, adruelighedsliste
48 ikke afholdslister
gestgiverliste
49 kvindelister
kvindevalgret, husmedre
51 unge
55 foreninger
idretsforenincer, lejerforening, foredragsforening m.v.
53 demokratiske lister
demokratisk fcrening, grundlovsforening m.v.
54 sociale lister
social liberal
82 liberale lister
77 blandede politiske lister
folkepartiet, politisk liste, forskellige partier,
fremskridtsparti, samlingsparti m.v.
8o frisindede lister
74 danske lister
73 tyske lister
86 mindre bemidlede
mindre skatteydere, smdfolk, sygekassens liste, mindre ejendoms-
besiddere, almindelig velgerklasse, mindre hartkorn,
arbejdsleshedsbevegelsen m.v.
87 mere bemidlede
sterre skatteydere, hojstbeskattede, antisygekasseliste,
storre hartkorn, besiddende m.v.
88 lenmodtagere
fastlennede, faste indtagter, fastlennede og arbejdere m.v.
89 understettelse
aldersrente m.v.
90 grundejere
41 middelstand

Borger—, fzlles- og samlingslister (Bourgeois lists).

coding List label
value
56 borgerlister
borgerlig fazllesliste, faelles borgerliste, det borgerlige parti,
skatteborgerforening, borgerligt samarbejde, borgergruppen m.v.
57 lokale borgerlister

stednavn + borjerliste, kommunal borgerliste, borgerlig sarliste

coding List label
value
58 borger- og erhvervslister
borger- og lardbol., borger- og fiskeril. m.v.
59 felleslister /
samlingsliste, samarbejdsliste
60 lokale fzlles- eller samlingslister
61 konservativ borger-, falles-, eller samlingsliste
62 antisocialister
opposition mod Socialdemokratiet, blandingsliste uden
Socialdemokratiet, socialistisk opposition m.v.
63 borger- og felleslister i 1937
64 frisindet eller liberal fzlles- eller borgerliste
69 danske borgerlister
75 tyske borgerlister

Lokallister (Local lists).

coding List label
value
65 velgerforening
kommunal velgerforening
66 lister, der refererer til et geografisk omrade
Fladseliste m.v.
67 kommunallister
lokale lister, skoledistrikt, valgdistrikt, sognelister m.v.
68 kommunale og lokal=z lister 1937
70 bylister
stationskvarteret, beboere i x-by m.v.
71 landlister
landboliste, markliste, overdrevsliste, strandliste m.v.
72 forstads- og villalister
50 lister med tilknytning til kommunale opgaver
skoleliste, sygehusliste, syge- og hjalpeforeningen, larestrids-
liste, et vejspergsmdl, skatteligningsliste, privatskoleliste
m.v.
78 upolitiske lister
uafhengig liste, upartisk liste, lokalpolitisk liste,
tverpolitisk l:iste, friliste, frie valgere m.v.
79 upolitisk interessegruppe eller borgerliste m.v.
upolitisk borgerliste, fri velgerforening m.v.
81 personlige lister
det gamle sognerdd, lesgangerliste m.v.
83 udflytter- eller tilflytterlister

Andre lister (Other lists).

coding List label

B 5.

value
76 lister uden betegnelse
liste a, b, c.... indtil 1933 inkl.
84 andre og uangivne lister 1937
85 gvrige lister

sammenholdsliste, samfundsliste, blandingsliste, sarliste,
separatliste, privatliste, ny liste m.v.

Ingen lister (No lists).

coding List label
value

98 fzllesliste valgt aden afstemning

99 manglende statistiske oplysninger

Appendix C

Data Files in the Archive.

C 1. Basic Data Files.

The following files contain the basic information for all file

manipulations described in Appendix D.

IDARKIV
The file contains information about every commune unit in the archive which
can be used for case selection, file integration and file aggregation

procedures. IDARKIV is reproduced in Appendix E.

JEORIG
The file haé information for the creation of JEARKIV.

OBARKIV
The file is used directly as archive file OBARKIV.

KBSTEM
The file contains information about voters and votes for the local

elections 1909-66.

KBLIST
The file contains information about list types (see Appendix B.) and vote
cast on the list types for the local elections 1909-66. KBSTEM and KBLIST
are used for the generation of KBARKIV.

NKARKIV
The file has data in and after 1970 and is used directly in the archive

as NKARKIV.

C 2. Basic Archive Files.

JEARKIV
Created from JEORIG. See C 1.

KBARKIV
Created from KBSTEM and (BLIST. See C 1.

Other Basic Data Files used as Basic Archive Files are: IDARKIV, OBARKIV
and NKARKIV

C 3. Integrated Archive Files (IDARKIV, JEARKIV, OBARKIV, XBARKIV).

IGARKIV
The file contains information from IDARKIV and from one or more of the

files: JEARKIV, OBARKIV, and KBARKIV. See Section 5.

INARKIV
The file has data from [DARKIV and NKARKIV. See Section 7.

C 4. Aggregated Archive Files.

GEARKIV
The file is a 1966 aggregation of a version of IGARKIV. See Section 6.

G7ARKIV
The file is a 1970 aggregation of a version of IGARKIV. See Section 7.

N7ARKIV
The file is a 1970 aggregation of INARKIV. See Section 7.

C 5. Integrated Archive Files (G7ARKIV, N7ARKIV).

GNARKIV
The file is a combined version of G7ARKIV and N7ARXIV. See Section 7.

2.

Appendix D

A Programmer's Guide to the Archive

D 1. Introduction

The various archive files described in the former sections have been
created by means of a number of program routines assembled in the socalled,
'"PG-ARCHIVE'., All programs have been written in the Fortran Extended lan-
guage and runned on a CDC 6400 computer under the SCOPE 3.3 operative system &
at RECAU, the Regional Computer Center at the University of Aarhus. '

It means that the following description only addresses itself to users
familiar with CDC computers and specially the SCOPE 3.3 operative system.

In a later edition of the Archive Manual, the programs will be present-
ed under the CDC KRONDS operative system and probably too in versions ad-
justed to other computers, such as UNIVAC at RECKU, the Regional Computer
Center at the University of Copenhagen,

The programs in its CDC SCOPE 3.3 version have been stored in an UP-
DATE mode as an OLDPL file which means that the programs can be transformed
by inserting various fortran text lines before written on the COMPILE file.
By inserting fortran text lines the user can control the program execution
in a number of predeterrined ways.

The number of text line insertions has been standardized and reduced
to a minimum, so that the user control of the programs in many ways res-
sembles program packages, such as SPSS and OSIRIS. The difference is mainly,
that the user in our case must have a certain knowledge of Fortran program—
ming.

The various programs in the 'PG-ARCHIVE' have been divided in several
*decks, so that in an UPDATE run in NORMAL MODE.only those decks which have been
modified using a number of *INSERT cards or specified on a *COMPILE card
will be written on the COMPILE file.

In the following sections the different program routines will be pre-~
sented, what they perform and how to activate and control them during a

number of text line insertions.

D 2. The Creation of 'JE-ARCHIVE'

Program Feature

The program creates the 'JE-ARCHIVE' using 'JEORIG' as input data. The
'JEORIG' is almost identical to the archive established by Jergen Elklitl)
apart from the fact, that a second variable has been inserted in sequence

002 indicating the corresponding commune identification on the 'KB-ARCHIVE'.

1) X-H Bentzon et al. Kommune Data Arkivet 1909-68, pp. 11-43.

~ o~
L o

In addition more statistical data have been added. Using the inserted va-
riable 002 as an aggregational variable, a number of units are aggregated
having the same identification numberl). By this procedure the number of
commune units are reduced from 1732 to 1500. As a result of the aggregation

a number of identification variables are transformed or suppressed:

Variable JEORIGZ) IB~ARCHIVE 5

number

001 ‘Original iden- Identification from
tification KB-ARCHIVE

002 Identificavion First original identification
from KB-ARCHIVE in the aggregation group

003 Commune name Commune name

QD4 (cont.) (cont.)

005 (cont.) (cont.)

006 date of creaticn date of creation in reversed

order (see p, 8) for the first

commune in the aggregation group

007 date of termination date of termination in reversed
order for the last commune in

the aggregation group

008 kind of boundary Number of aggregated units
change
009 number of persons number of voters in 1920

involved in boundary

change

010 first commune :nvolv- nurber of votes cast in 1920

ed in boundary change

011 second commune involv- Social Democrats in 1920

ed in boundary change

012 third commune nvelv- The Radical Liberals in 1920

ed in bcundary change

013 number of voters The Conservatives in 1920

in 1920

o °

1) see p. 6 2) K-H Bentzon, op.cit. p. 19 3) pp. 6-8.

D 3.

The user can control the prcgram execution by determining what variables

from 'JEORIG' whick shall be aggregated and written upon 'JE-ARCHIVE'.

gEdate Deck

*DECK JEARKIV, contains main program 'JEARKIV',

Files

(Files are listed in the following order on the Program Card)
TAPEl: reads information from JEORIG

TAPE2: writes informatioa on JEARKIV

TAPE3: writes a control transcript from JEARKIV

TAPE4: scratch file

OUTPUT: normal output print from program execution

Update Control Cards

¥IDENT xxxx

xxxx is any name identifying the following text line insertions.

#INSERT JEARKIV.6 (R)l)
INTEGER VARA(), VARB()
The number in the two brackets indicates the number of variables from
JEORIG which shall be aggregated and written on JEARKIV, i.e., from
vafiable 013 on JEORIG corresponding to variable 009 on JEARKIV.,

®INSERT JEARKIV.7 (R)
VARANT = X

X equals the number inside the brackets in the former card.

*INSERT JEARKIV.S8 | (R)
1 FORMAT ()
Format on JEORIG.

*INSERT JEARKIV.9 (R)
9 FORMAT ()
Format on JEARKIV.

*INSERT JEARKIV.11 (0)
KONTROL = O

If specified no control transcript will be written on TAPE3.

#NSERT JEARKIV.12 (0)
REWIND = O
If specified TAPEl, if CONTROL is set to zero, and TAPE2 will not be

rewcund after prog.ram termination.

1) R = required 0 = optional

Flow Chart of program JEARKIV

JEORIG
(TAPE1)

PROGR
JEARKI

JEARKIV
(TAFE2)

SCOPE 3.3 Control Card Deck creating standard version of JE-ARCHIVE

XXXXX,CM47000,T700,NT1. (specification of job card name)
ACCOUNT, X,Y,Z. (specification of user's account card)
LIMIT,1000.
RFL,100.
RPACK, XXX, E,XXX. (specification of user's RPACK)
REQUEST,JEARKIV, PK,XXX. (specification of user's RPACK)
RFL, 35000.
UPDATE, P=PGARKIV,D.
RFL, 47000,
FTN, I=COMPILE.
REDUCE.
LGO,JEORIG,JEARKIV.
RFL, 10000.
COPY SBF, TAPE3.
7/8/9
*[DENT KONTROL
*INSERT JEARKIV.6
INTEGER VARA(261), VARB(261)
¥ NSERT JEARKIV.7
VARANT=261

¥ NSERT JEARKIV.S8

1 FORMAT (217,2X,3R10,3X,1117,14(/,1817),/517)
*¥[NSERT JEARKIV.9

9 FORMAT (217,2X,3R10,3X,1117,14(/,1817),/117)

6/7/8/9

It is assumed that JEORIG and PGARKIV are files stored on RPACK.

D 3. The Creation of "KB-ARCHIVE'

Program Feature

When it was decided to establish an archive containing data from the
local elections.a serious problem was encountered because of differences
in number and names of the lists put up from one commune to another. As
indicated in appendix B, a very extensive list classification of 92 num-
bers was established, but it meant, that it was extremely space wasting
to allocate a fixed variable position to every list type. Instead, a spe-
cial archive, the socalled 'KBLIST' was created having floating variable
positions. For every list put up in a commune at a given election a unit

record was created on 'KBLIST' having the following variable outline:

Variable Variable name
number
001 Commune: identification

Pogition 1-2: two last digets in the year of election
Position 3-4: County number. See p. 31.
Position 5 : Commune type. See p. 32.

Position 6-8: Within county commune number. See p. 32.

002 List type code
(see Arpendix B)

003 Number of votes on the list

Number of variables: 3

Fortran Format (18,2X,12,2X,I6)

Number of Cases: 7962¢

Sorting Order: 1. Position 3-8 ‘on variable 001 in ascending order..

2. Position 1-2 on variable 00l in ascending order.

For variables cortaining information about male and female voters, votes
and representation a more normal file layout was adopted. The socalled file

'KBSTEM' has the follcwing variable outline:

Variable Variable Name
nunber
001 Commune: identification

(similar to 'KBLIST')

002 Male Voters

003 Female Voters

004 Male Votes

005 Female Votes

006 Total Valid Votes

007 Electecd Male Candidates
008 Electecd Female Candidates

Number of Variables: §

Fortran Format (I8,7I7)

Number of Cases: 9228

(this number will be increased considerably in the near future, when data

fro

ve

Sor

fol

1)

2)

m all local elections concerning male and female voters, votes, etc. ha-

been coded)

ting Order: As 'KBLIST'

Using 'KBLIST' and 'KBSTEM' as input files, the program performs the

lowing file manipul.ations:

The main program 'SKTAPE2' aggregates on the user's choice a number of
list types from 'KBLIST' and assigns to the reduced list classification
fixed variable position for every election in which a given commune unit

has existence.

Owing fo the fact —“hat a number of commune units have not been in existence
in the whole period, i.e. from 1909 to 1966, the subprogram 'DKTAPE3' creates
number of commune mits for those elections in Which the commune is non-exi-
stent. The created commune units consist of a simulated commune number fol-
lowed by a number of zero value variables. By this procedure we get a double
unit system: a number of supra units each consisting of 15 subunits in as-

cending time order, corresponding to the 15 local elections from 1909 to

D 7.
1966. Using the supra units as basic units enables the user to make
longitudinal analysis of the list votes.

3) The subprogram 'DKTAPE5S' impose the wnit structure described under
point 2 on 'KBSTEM' by inserting the commune number non-existent on
'KBSTEM' followed by 7 zero value variables. By this procedure the
revised 'KBLIST' and 'KBSTEM' get the same unit structure.

4) Finally subprogran 'KBARKIV' merges the revised 'KBLIST' and 'KBSTEM'
into a single file based solely upon the supra wnit structure, the so-
called fXBARKIV'. Each unit is identified by a commune number without
time indication containing information from all elections, including
the original variables as well as the inserted zero value variables

during the former file manipulations.

Update Decks

*SKTAPE2: Contains mainprogram 'SKTAPE2',
*DKXTAPE3: Contains subroutine 'DKTAPE3'.
*DKXTAPES5: Contains subroutine 'DKTAPES'.
*#*KBARKIV: Contains subroutine 'KBARKIV'.

Files

(Files are not listed in the following order on the program Card. See p. D9)

TAPEl: reads 'KBLIST'. See p. D 5.

TAPE2: writes first revised version of 'KBLIST':

Variable Variable name
number
001 Commune: identification

(similar to variable 001 on 'KBLIST')

002 Kind of local election

(see p. 32)
003 Number of lists put up
004 Total votes for lists put up
005 Number of votes on first single or aggregated list type
006 Number of votes on second single or aggregated list type
007 Number of votes on third single or aggregated list type

nnn Number of votes on nnn'th single or aggregated list type

D 8.
Number of variables: < + number of single or aggregated list types
Fortran format: depending upon number of variables
Number of cases: 19914

(the nunber equals the total sum of communes in every election, i.e. the
number of communes in 1909 + the number of communes in 1913...... + the

number of communes in 1966)
Sorting order: as 'KBLIST'
TAPE3: writes the second revised version of 'KBLIST!.

This file is identical to TAPE2 apart from the number of cases, which has
been increased in order to establish a longitudinal supra unit structure.
See point 2 on page D 6-7. It means that the subunits can be structured

in series of 15, corresponding to the number of elections:

O9xXxXXXX
1 3xxxxxx
17xxxxxx
21XXXXXX
2 DXXXXXX
29 XXAXXX
33xxXxXXX
37 XXXXXX
43XXXXXX
46XXXKXXX
50XXXXXX
54XXXXKX
58xxxxxX
62XXX XXX

66 XXXXXX
Number of cases: 24825

(the number equals 15 x 1655, which means, that 1655 geographical different

commune units have beean identified on 'KBLIST')
TAPE4: reads 'KBSTEM'. See p. D 6,
TAPES5: writes the first revised version of 'KBSTEM':

This file is identical to TAPE4 apart from the number of cases, which has
been increased in order to establish a unit structure identical to TAPE3.

See point 3 on page D 7.

Number of cases: 24825

TAPE6: writes 'KBARKIV'. See pp. 29-68
TAPE7: writes a contrcl transcript of 'KBARKIV'
QUTPUT: normal output print from program execution

The files are ordered in the following way on the Program Card in order

to facilitate file name alterations on the LGO control card:

TAPE1l
TAPE4
TAPE6
TAPE7
TAPE2
TAPE3
TAPES
OUTPUT

KBLIST
XBSTEM
KBARKIV

I

Update Control Cards

* IDENT XXX (0)
XXX is any name identifying the following text line insertions.

* INSERT SKTAPE2.5 (R)l)
INTEGER VARA(X), VARB(Y), VARC(Z,15), VARD(Z,15)

X = number of variables on TAPE2, i.e. 4 + number of single and/br ag-

gregated list types

Y =X-1

Z=Y +7

* INSERT SKTAPE2.6 (R)
DATA LISTED/iuvvvervenennnn 4

As indicated in point 1 page D 6, the mainprogram 'SKTAPE2' performs the
function of reducing the orignis list classification to a more suitable
number of different list types which can be allocated a fixed variable
position for a given commune at every election. The procedure involves
a number of list vote aggregations for those list types which are to be
combined into a single list. Using the DATA LISTEID/ / text line
insertion the user car determine to what extent he wants the original
list type classification to be reduced, what list he will have trans-
ferred unaltered and vhat lists he will have aggregated.

Unfortunately the DATA LISTEID/’..... /'text line is a bit difficult to
handle, so we have to make some remarks about the logic of the program.
LISTEID is a predefined integer array of 92 cells or put in another way,

the array consists of 92 indiced variables from 1 to 92, Consequently a

1) R = required 0 = optional

D 10.

given cell or variable in an array can give us two kinds of information,
on the one hand side the index or sequence number of the variable in the
array and on the other hand side the assigned value of the variable. Using
these two kinds of information and having an extended and a reduced array

the program can perform a number of functions in a very simple way :

1) reducing the number of list types
2) giving each list type a fixed position

3) determining the sequence order of list types

Primarily the user must decide how and to what extent he wants to reduce
the original list classification of 92 types. The reduced classification,
if reduced at all, determines the array definition of VARA, VARB, VARC and
VARD. The next step is to inform the program using the DATA LISTEIQ/ P /
what list types to be combined and aggregated and their sequence order. The
user must insert 92 integers separated by commas between the two slashes by
using a number of FORTRAN continuation text lines,

When the program reads a list type code in a given commune at a given
election from 'KBLIST' the variable on array LISTEID having the same se-
quence number is activated. The value given the activated variable by the
user on the DATA LISTEID/ / text line tells the program, that the va-
riable on array VARA having that value as sequence number plus 4 should be
activated. Finally the activated variable on array VARA is given the value
of the number of votes cast for the list type in question. If the activated
variable on array VARA already has a value above zero because other earlier
read list types in the commune have been assigned to the same variable, the
list votes are aggregated. If for a given commune at a given election a
list vote variable on array VARA is not activated because the lists assigned
to that variable have not been put up the variable remains in its initial
zero value position,

If the explanation seems unclear to the reader, a number of examples will
clarify how to use the DATA LISTEID/ / text lines.

If the DATA LISTEID/ / is filled with 92 ones, and only ones, the
array VARA must be indiced to 5 and variable 004 and variable 005 on TAPE2 will
have the same value.

If DATA LISTEID/ / is filled with 92 different numbers, the range
must be from 1 to 92, the array VARA must be indiced to 96 and no list types
will be aggregated.

If DATA LISTEID/ / is first filled with 30 ones and then with 62
twos, the array VARA must be indiced to 6 and votes for list type 1 to 30 will

be aggregated and the result written on variable 005 on TAPE2 while votes for

D 11.
list types 31 to 92 will be written on variable 006. We can summarize the
use of DATA LISTEID//..... /’by formulating a number of rules:

1) the text lines must contain exactly 92 numbers separated by commas.

2) the maximuwn range is 92.

3) a rank order of the numbers must have as the lowest number 1 and an in-
cremental factor of 1. The observed order will often be quite different.

4) the highest number indicates consequently the number of different list

types on TAPE2.
*INSERT SKTAPE2.7
VARANTA=X (R)
X equals the index number of VARA
*INSERT SKTAPE2.8
11 FORMAT() (R)

Format for TAPE2. The number of variables to be formatted equals X in the
former text line. It nust be remembered, that the first variable, i.e.
the commune identification must at least be given 8 positions. For the
rest of the variables 7 positions will assure, that no variable will be

out of range.
*INSERT SKTAPE2.10

KONTROL = O (o)l>
If specified no control transcript will be written on TAPE7
*INSERT SKTAPE2.11

REWIND = O

If specified TAPE1l and TAPE4 will not be rewound, if KONTROL is also

set to zero TAPE6 will not be rewound either.
*INSERT DKTAPE3.8
2 FORMAT() (R)

Format for TAPE3 similar to TAPE2 apart from the fact, that variable 001,
i.e. commune identification, must be split up into two variables, the first
indicating the year of election, i.e. two first positions, the second in-
dicating the commune number, i.e. the last six positions of the original

variable.,
*INSERT DKTAPES.8
1 FORMAT() (R)

Format for TAPE3, but reads only variable 001 and 002, i.e. the whole

D 12.
commune identification of 8 positions as one variable. It must be remembered
to skip line two, three, etc. by inserting slashes.

*INSERT KBARKIV.S8

4 FORMAT() (R)
Format for TAPE3
*INSERT KBARKIV.9

8 FORMAT()

Format for TAPE6 or 'KBARKIV'. Number of variables to be specified equals
number of indiced vari.ables in array VARC or VARD plus 1, see page D 9,
Put into a formula: Z x 15 + 1, It should be realized, that the number of
variables for a unit on 'KBARKIV' equals: commune identification + 15 x
((number of variables on TAPE3 - 2) + (number of variables on TAPE5 - 2)),
where the two 2 digets in the two inner brackets represent the split com-.

mune identification.

Flow Chart of Program KBARKIV

KBLIST KBSTEM
(TAPE1) (TAPE4)
\\\\\5i PROGR 4(////,
KBARKIY,
KBARKIV
 TAPE6)

SCOPE 3.3 Control Card Deck creating Standard Version of KB-ARCHIVE

XXXXXX ,CM47000, TY 300, NT1. (specification of user's job name)
ACCOUNT,X,Y,Z. (specification of user's account card)
LIMIT,1000.

RFL,100.

RPACK, XXX, E,XXX. (specification of user's RPACK)
REQUEST, KBARKIV, PK, XXX. (do.)
RFL, 35000.

UPDATE, P=PGARKIV,D.

RFL, 47000.

FTN, I=COMPILE.

REDUCE.

LGO, XBLIST,KBSTEM, KBARKIV.

RFL,10000.

D 13.

COPY SBF, TAPE7 .

8,/8/9

* IDENT KONTROL

* INSERT SKTAPE2.5
INTEGER VARA(47),VARB(46),VARC(53,15),VARD(53,15)

* INSERT SKTAPE2.6
DATA LISTEID/ 1,2,3,4,5,6,7,8,7,9,11,12,10,38,7,13,14,16,16,15,
Al6,16,16,16,36,37,22,22,20,19,21,23,25,25,25,25, 31, 24, 32,26, 26,
B26,26,27,27,28,29,28,26,17,17,29, 33, 35, 33, 34, 35, 33, 33, 39,17, 35,
¢3s, 35,40, 36, 35, 35, 37, 36,37, 35,17,18,18,17,18,17, 35,43, 35, 30, 32,
D31, 30,32,42,41/

*x INSERT SKTAPE2.7
VARANTA=47
* INSERT SKTAPE2.8
11 FORMAT(18,6X,1717,/1917,/,1017)

* INSERT DKTAPE3.8

2 FORMAT(I2,16,6X,1717,/,1917,/1017)
* INSERT DKTAPES.S8

1 FORMAT(18,//)
* INSERT KBARKIV.8

4 FORMAT(I2,16,6X%,1717,/1917,/,1017)
* INSERT KBARKIV.9

8 FORMAT(44(1817,/),417)

6/7/8/9

It is assumed, that PGARKIV, KBLIST and KBSTEM are stored on the user's RPACK.

D 14.

D 4. The Creation of the 'IG-ARCHIVE'.

Program Feature

The setting up of the three original data archives, i.e. 'JE-ARCHIVE',
'OB-ARCHIVE' and 'KB-ARCHIVE' resulted in the very unfortunate situation,
that to a very high extant information for a giVen geographical commune unit
were dispersed on th;ee different files preventing simultaneous use of the
data from the three filss. In fact the first step in order to estéblish a
more usable data archivs was to/integrate the original data archives into a
single archive, where a given geographical commune unit should contain in-
formation from all thre= archives. Owing to the fact, that the three archi-
ves used different unit identification systems, it was necessary to create
an identification list “elling what identification numbers in the three
archives which represented the same geographical commune unit. Variable 001
to 003 in the 'ID-ARCHIVE' give us information about corresponding commune
identification numbers.; In the case where a commune is non-existent in one
or two of the archives, the identification number has been filled with 9
digets. Finally, a program has been worked out which for every commune unit
in the 'ID-ARCHIVE' selects those commune units in the three data archives
having a commune identification number similar to variable 001 to 003 in the
'ID-ARCHIVE' and merges the three units to a single unit. If a commune unit
is non-existent in one or two of the archives, the variable positions for that
archive in the unified archive, the socalled 'IG-ARCHIVE', are zero filled, so
that every unit in the 'IG-ARCHIVE' gets the same size.

While the logic of the program is extremely simple, the technical solu~
tion is a bit difficult owing to the fact, that it is a very high computer time
consuming job to search for data spread around in big sequential files. Instead
a randomization procedure has been adopted, which enables the user to select
data spread around in a file at a very high speed.

In a normal formatted FORTRAN file, the variables, which in CM, Central
Memory, are represented each by a binary filled 60 bits word, are transformed
into a character strings on the mass storage device, i.e. DISC, where each
character is representec by a 6 bits configuration according to the DISPLAY
CODE. The organization cf the string is determined by the FORTRAN FORMAT state-
ment. The physical representation on the DISC is organized in a number of RECORD
BLOCKS, for the time being each consisting of 28 PRU's, scattered around on the
DISC. A table in LOW COFE of CM contains position and sequence of the BLOCKS and

1) See p. El.

D 15.
PRU's on the DISC. Since the user has no access to that table, the file
operates as sequential :Jor the user, meaning that a file always has to be
written in the same order as it has been written. Accordingly, if
the user wants to get access to a given case in the file, he has to read all
the previous ones first. Since the ordering of commune identifications on the
original archive files are different from the case order on the 'ID-ARCHIVE', a
merging of the three files requires an enormous computer time, because each
file on the average has to be fully read 849 times, i.e. approximately the
number of commune units on 'ID-ARCHIVE' divided by 2.

In order to solve that problem, the program using a special RANDOM BACK-
ING STORAGE ROUTINE for FTNl) generates scratch random editions of the origi-
nal data archives, if al.l three has to be merged. The randomization gives us
two important advantages:

First we get access to the physical representation of the randomized file
on the DISC by means of POINTER, which tell the I/b routines the position on
the DISC of desired information. The method is logically equivalent to indiced
variables described in section D 3, where we used both the position in the
array and the value of The variable as information. Using the POINTER we do
not have to read the previous cases in a file first, but can direct the read
routine immediately to :the data identified by a given pointer number.

Next the random routine stores the data as binary information, i.e. identi-
cal to the CM representation of the variables, which means, that a time consum-
ing conversion process 0 character strings is avoided. Each variable is stored
as an unformatted binary words of 60 bits which can be directly read into Cen-
tral Memory. The program organizes the randomization process in such a way,
that a pointer is assigiaed to every case in the file. The pointer and the commune
identification number are then stored in a double array (2,X), where X is identi-
cal to the number of cases in the archive file in question. Accordingly, when
the randomization process has finished we are left with three double arrays, one
for each archive file, if all three archive files are randomized.

The next step is tc read successive cases from 'ID-ARCHIVE'. For a given case,
the program, using a sp=cial subroutine, finds that identification in the array
for 'JE-ARCHIVE', that is identical to variable 002 in 'ID-ARCHIVE'. The corres-
ponding pointer is then used to read the variables which are contained in the case
having the commune idetification in question. The same procedure for variable
003 and 001 is then used for 'OB-ARCHIVE' and 'KB-ARCHIVE'. Finally all variables
are written as one case on a sequential and formatted file, the socalled 'IG-
ARHCIVE'. If an identification in 'ID-ARCHIVE' is filled with 9 digets, the vari-

ables for the archive ian question are zero filled on 'IG-ARCHIVE'.

1) Jens U. Mouritzen: Random Backing Storage Routines for Algal, FIN, Pascal,

run. RECAU 72-18.

D 16.

The program has a number of options which enables the user to create
different versions of 'IG-ARCHIVE':

1) The user can determine the sequence of cases by resorting the 'ID-ARCHIVE'
before program execution. The sorting procedure is performed by a standard
program SORTMRG.l)

2) The user also decides how many and the combination of the original archive
files which must be randomized and written on 'IG-ARCHIVE'.

3) Using special format stetements it is possible to extract only a subset of
variables from a given archive.

4) A select procedure cen select a subset of cases from 'ID-ARCHIVE' and con-
sequently on 'IG-ARCEIVE'.

5) Finally different lires from a case on 'ID-ARCHIVE' can be written on the
corresponding case or. 'IG-ARCHIVE'.

The reason will be explained later on.

Update Decks

¥IGARKIV: Contains mainprogram 'IGARKIV' and subroutines 'SQG' and 'UDSKRIV'.
*¥JERAND : Contains subroutine 'ARAND'.
*OBRAND : Contains subroutine 'BRAND'.
*KBRAND : Contains subroutine 'CRAND'.

*TJE : Contains subroutine 'UNIA'.
*T0B : Contains subroutine 'UNIB'.
*TKB : Contains subroutine 'UNIC'.

*IJEOBKB: Contains subroutine 'UNIABC'.
*IJEOB : Contains subroutine 'UNIAB'.
*IJEKB' : Contains subroutine 'UNIAC'.
*IOBKB : Contains subroutine 'UNIRC'.

Files
(Files are listed in the following order on the Program Card)

TAPE1l: Reads 'JEARKIV'

TAPE2: Reads 'OBARKIV'

TAPE3: Reads 'KBARKIV'

TAPE7: Reads 'IDARKIV'

TAPE8: Writes 'IGARKIV'

TAPE9: Writes a control transcript of 'IGARKIV'
TAPE4: Writes a randomiz=d version of 'JEARKIV'
TAPES5: Writes a randomiz=d version of 'OBARKIV'
TAPE6: Writes a randomiz=d version of 'KBARKIV'

OUTPUT: Writes normal print output from program execution.

1) CDC 6000 version 3. SORT/MERGE. Reference Manual. Nr. 60252600E.

D 17.

Update Control Cards

*[DENT XXX (0) 1)

XXX is any name identifying the following text line insertions.

*NSERT IGARKIV.8 (R)l)
INTEGER A(X), AA(X), B(Y), BB(Y), c(2), cc(z)

As you recall from the former section about program feature, information from
Central Memory is directly transferred to the mass storage device without use

of BUFFER and change of data representation, It means that a data transmission
from CM to DISC and vice versa always will contain 1 PRU = 64 words = 64 CM
binary variables. It is »ossible for a given random writing order (WRITRN)Z)

to specify more than one PRU's to be transferred from CM to DISC, but it means that
a variable array to be transferred always must be a multiple of 64. If the ac-
tual number of variables, i.e. a case on an archive file,do not make up a mul-
tiple of 64, the array must be defined to the nearest higher multiple of 64,

If e.g. there is 630 variables to be transferred in a single WRITRN order, i.e.
identified by a single POINTER, the array must be indiced to 640 = 10 x 64, It
means, that the last 10 variables will be empty. According to the reasoning above,

X, Y, and Z must be defined in the following way:

X the nearest higher multiple of 64 from the number of variables on a case on

'JEARKIV'.

Y = the rearest higher multiple of 64 from the number of variables on a case on

'OBARKIV'.

Z = the nearest higher multiple of 64 from the number of variables on a case on

'XBARKIV'.

If not all three archives must be randomized, only those arrays for the archives
to be randomized have to be defined. If e.g. only 'JEARKIV' and 'KBARKIV' are to
be randomized, it is only necessary to define the arrays: A(X), AA(X), C(2Z), cC(Z).

*[NSERT IGARKIV.9 (R)
INTEGER REGISTA(2,XX), REGISTB(2,YY), REGISTC(2,2Z)

By inserting this text line, the user defines the double arrays mentioned above

combining POINTER and case identification:

1) R = required 0 = optional

2) See Jens U. Mouritser, op.cit. p.8.

D 18.

XX = number of cases in 'JEARKIV'.
YY
VAA

number of cases in 'OBARKIV'.

]

number of cases in 'KBARKIV!

i

Like the former text lire only the arrays for the archive files to be random-

ized have to be defined.

*[NSERT IGARKIV.10 (R)
IXXX=1

By this text line the user determines the number and combinations of archive

files to be randomized end finally written upon 'IGARKIV':

IXXX=IJE: 'JEARKIV' will be randomized and written upon 'IGARKIV'.

IXXX=IOB: 'OBARKIV' will be randomized and written upon 'IGARKIV'.

IXXX=IKB: 'KBARKIV' will be randomized and written upon 'IGARKIV'.

IXXX=IJEOBKB: 'JEARKIV', 'OBARKIV', and 'KBARKIV' will be randomized
and written upon 'IGARKIV'.

IXXX=IJEOB: 'JEARKIV' and 'OBARKIV' will be randomized and written upon

'IGARKIV',

IXXX=IJEKB: 'JEARKIV' and'KBARKIV' will be randomized and written upon
'TGARKIV'.

IXXX=IOBKB: 'OBARKIV' and 'KBARKIV' will be randomized and written upon
'IGARKIV'.

*INSERT IGARKIV.11 (R)

PRUSA=XXX

PRUSB=YYY

PRUSC=ZZZ

Remember that the file randomization requires, that variables will be trans-
ferred from CM to DISC and vice versa in PRU's, where one PRU equals 64 words

on binarry CM variables. Consequently:

XXX=X/64
YYY=Y/64
222=2/64

where X, Y, and Z have been defined in the second text line insertion. Only the

variables for the archive files to be randomized have to be defined.

*INSERT IGARKIV.12 (R)
TA=XXXX
IB=YYYY
1C=222Z

D 19.

XXXX = number of variables to be read from 'JEARKIV' and finally written upon
'IGARKIV'.

YYYY = number of variables to be read from 'OBARKIV' and finally written upon
'IGARKIV'.

ZZ7ZZ = number of variables to be read from 'KBARKIV' and finally written upon
'IGARKIV'.

Only the variables for the archive files to be randomized have to be defined.

«INSERT IGARKIV.13

NA=XX
NB=YY
NC=Z7

where XX, YY, and ZZ are defined as the number of cases in each archive file.
See the second text line insertion. Only the variables for the archive files

to be randomized have to be defined.

*INSERT IGARKIV.14 (0)
IDARKI V=N

The text line insertions controls to what extent lines from 'IDARKIV' are
written upon 'IGARKIV'. [f the text line is omitted, IDARKIV is automatically
set to zero, which instructs the program to write the first line from each
case in 'IDARKIV' on 'IGARKIV'. If the program is only used to integrate the
archive files, this procedure should be used. If N is set to 1, the first and
the second line from 'IDARKIV' are written upon 'IGARKIV'. This procedure must
be used, if 'IGARKIV' has to be aggregated to the 1966 commune structure. If
N is set to 2, the first and the third line from 'IDARKIV' are written upon
'IGARKIV'. This procedure must be used, if 'IGARKIV' has to be aggregated to
the 1970 commune structure., The two last options, i.e. N set to 1 or 2 must
be used in connection wi:h the case aggregational procedures described in

section D 5.and D 6.

¥ NSERT IGARKIV.16 (0)
XONTROL=0

If specified no control franscript will be written on TAPES,

TAPES8 will not be rewound.

¥ NSERT IGARKIV.17 (0)

REWIND=0

If specified TAPEl, TAPE2, and TAPE3 will not be rewound.

D 20.

*INSERT JERAND. 10 (0)
9 FORMAT ()

Format for 'JEARKIV' has only to be specified, if 'JEARKIV' must be randomized.

*INSERT OBRAND. 10 (0)
14 FORMAT ()

Format for 'OBARKIV' has only to be specified, if 'OBARKIV' must be randomized.

*INSERT KBRAND.10 (0)
18 FORMAT ()

Format for 'KBARKIV' has only to be randomized, if 'KBARKIV' must be randomized.

The user finally has to select the subroutine which integrates the desired
archives, i.e. those files which have been randomized. The user selects the

appropriate subroutine by using the corresponding INSERT IXXX.yy text line:

*INSERT IJE.yy selects subroutine 'UNIA' for compilation,
'UNTIA' writes 'JEARKIV' on 'IGARKIV'.

*INSERT IOB.yy selects subroutine 'UNIB' for compilation.
'UNIB' writes 'OBALRKIV' on 'IGARKIV'.

*¥INSERT IKB.yy selects subroutine 'UNIC' for compilation.
'UNIC' writes 'KBARKIV' on 'IGARKIV'.

*INSERT IJEOBKB.yy selects subroutine 'UNIABC' for compilation.
'UNIABC' writes 'JEARKIV', 'OBARKIV' and 'KBARKIV' on 'IGARKIV'.
*INSERT IJEOB.yy selects subroutine 'UNIAB' for compilation.,
'UNIAB' writes 'JEARKIV' and 'OBARKIV' on 'IGARKIV'.

*INSERT IJEKB.yy c<elects subroutine 'UNIAC' for compilation,
'UNIAC' writes 'JEARKIV' and 'KBARKIV' on 'IGARKIV',

¥[NSERT IOBKB.yy selects subroutine 'UNIBC' for compilation.
'UNIBC' writes 'OBARKIV' and 'KBARKIV' on 'IGARKIV'.

«(NSERT IXXX.1l0 , where IXXX represents one of the above-mentioned subroutine

Decks.
9 FORMAT () (0)
14 FORMAT () (0)
18 FORMAT () (0)

9 FORMAT () represents the format for 'JEARKIV' and must be specified if

IXXX equals IJE, IJEOBKB, IJEOB or IJEKB.

14 FORMAT () represents the format for 'OBARKIV' and must be specified if
IXXX equals 10B, IJEOBKB, IJEOB or IOBKB.

18 FORMAT () represents the format for 'KBARKIV' and must be specified if
IXXX equals IKB, IJEOBKB, IJEKB or IOBKB.

D 21.

*INSERT IXXX.27

1F () 29,20 (0)
If the logical expression inside the brackets is true, a case from 'IDARKIV'
is selected, if not, the case is rejected, i.e. not written on 'IGARKIV'. If
the text line is omitted, all cases from 'IDARKIV' are written upon 'IGARKIV'

and as well all cases from the randomized archive files.

Flow Chart of Program I3ARKIV

JEARKIV OBARKIV] KBARKIV| IDARKIV

(TAPE1) (TAPE2) (TAPE3) (TAPE7)

PROGRAM L<///////

IGARKIV

—

Y
IGARKIV
STAPES

SCOPE 3.3. Control Card Deck creating Standard Version of 'IG-ARCHIVE'.

XXXXX,CM100000,T3000,NTl. (specification of usar's job name)

ACCOUNT, X,Y,Z. (Specification of user's account card)
LIMIT,1000.

RFL,100.

RPACK, XXX, E, XXX. (specification of user's RPACK)
REQUEST, IGARKIV, PK, XXX. (specification of user's RPACK)

RFL, 2000.

ATTACH , RANDOM, RECAURANDOMIO,CY=2.
RFL, 35000.

UPDATE, P=PGARKIV,D.

RFL, 47000.

FTN, I=COMPILE.

RFL, 100000.

LOAD, RANDOM.

REDUCE.

LGO, JEARKIV,0BARKIV, KBARKIV, IDARKIV, IGARKIV.
RFL, 10000.

COPYSBF,TAPEY.

7/8/9
*IDENT KONTROL
*INSERT IGARKIV.S8
INTEGER A(320),AA(320),B(128),BB(128),C(832),CC(832)
*INSERT IGARKIV.9
INTEGER REGISTA(2,1500),REGISTB(2,1120),REGISTC(2,1655)
*INSERT IGARKIV.10
IJEOBKB=1
*INSERT IGARKIV.11
PRUSA=5
PRUSB=2
PRUSC=13
*INSERT IGARKIV.12
TA=269
IB=110
IC=796
*INSERT IGARKIV.13
NA=1500
NB=1120
NC=1655
*INSERT JERAND. 10
9 FORMAT(217,2X, 3R10,3X,1117,14(/,1817), /17)
#INSERT OBRAND.10
14 FORMAT(6(1817,/),217)
#MNSERT KBRAND.10
18 FORMAT(44(1817,/).417)
*[NSERT IJEOBKB.10
9 FORMAT(217,2X, 3R10,3X,1117,14(/,1817), /17)
14 FORMAT(6(1817,/),217)
18 FORMAT(44(1817,/),417)

6/7/8/5

(It is assumed, that PGARKIV,JEARKIV, OBARKIV, KBARKIV and IDARKIV are stored on
the RPACK)

D 23.

5. The Creation of the 'G6--ARCHIVE'.

Program Feature

On page 73 to 77 we have given a detailed description of how to create the
'G6-ARCHIVE'. In this sect:ion we will recall the stepwise file manipulations and

shortly consider the main programs AGGREGl and AGGREG2.

1) The 'IDARKIV' is sorted according to variable 013 in ascending order using
1 .
the standard program SORT/MERGE). By this procedure the communes completely

or primarily included in a given 1966 commune are grouped together.

2) Using the main program AGGREGl' from 'PGARKIV' a number of 1966 communes are

aggregated according to the user determined per cent population deviance.

3) Owing to a number of identification alterations of variable 013 accomplished
under point 2, the revised 'IDARKIV' is sorted once more according to variable

013 in ascending order.

4) Using the sorted revised version of 'IDARKIV' created under point 3, a version
of 'IGARKIV' is created setting IDARKIV = 1. (See p. D 19). It means that the
first and the second line from the sorted revised version of the 'IDARKIV!

are printed on every case on 'IGARKIV'.

5) Using variable 013 from the sorted revised 'IDARKIV' on 'IGARKIV' as aggregatio-
nal variable, all cases on the 'IGARKIV' having identical values on variable

013 are aggregated using the main program 'AGGREG2' from 'PGARKIV'.

The stepwise file mainpulations can be accomplished by a number of separate
jobs, saving the necessary files for the following job, or by a single job per-
forming a number of indeperdent program executions. The last solution will be pre-
sented here,

It appears from above, that we during the file manipulations are using three

mainprograms :

a) Mainprogram 'AGGREG1'.
This program performs the rather complicated task to alter identifications and
names on the 'IDARKIV' according to the user determined per cent population
deviance (See p. 76). Furthermore the program can either work upon the 1966
commune structure, i.e. variable 013 to 027, or upon the 1970 commune structure,
i.e. variable 028 to 04:.
In order to reduce the computer time considerably, it is required, that the
user sorts the 'IDARKIV' according to either variable 013 or variable 028 before
running the program.

The program performs its identification and name alterations in two steps.

1) CDC manual nr. 60252600E, SORT/MERGE Reference Manual 6000 version 3.

D 24.

First the program controls, using information in variables 019 and 024 resp.
variables 034 and 039, o what extent a given number of old communes primari-
ly allocated to a 1966 resp. 1970 commune, result in an excess of per cent
population units from the real 1966 resp., 1970 commune. If the deviation ex-
ceeds the user determined population deviance, one or more adjacent 1966 resp.
1970 communes are aggregated by giving them identification and name of the
greatest 1966 resp. 1970 commune.

Next, in a similar way as above, the program controls, using information in
variables 020 and 025 resp. 035 and 040, to what extent a given number of old
communes primarily allocated to a 1966 resp. 1970 commune, result in a deficit
of per cent population units from the real 1966 resp. 1970 commune. If the de-
viation exceeds the user determined population deviance, on or more adjacent
1966 resp. 1970 commune:s are aggregated by giving them identification and name
of the greatest 1966 resp. 1970 commune.

Finally a special version of the 'IDARKIV' is written for the creation of the

'INARKIV'.

This file contains for =very line first number and name of the original commune
in the 'NKARKIV' extracted from 'IDARKIV', see p. 80, followed by the eventually
alterated commune number and name during program execution., If no alteration

numbers and names will be identical:

Variable Variable name Type Source

number

001 original 1970 commune identi- I IDARKIV
fication

002 1970 commune name R IDARKIV

003 1970 commune name continued R IDARKIV

004 1970 commune name continued R IDARKIV

005 eventually alt=rated 1970 commune I Program
identification

006 eventually alt=rated 1970 commune R Program
name

007 eventually altzrated 1970 commune R Program

name continued

008 eventually altsrated 1970 commune R Program

name

Fortran Format: (I4,1X,3R10,1X,I4,3R10)
Number of cases: 278 (if all 1697 cases on IDARKIV is selected. See p. E6.)

Sorting order: Ascending order on variable O0l.

b) Mainprogram 'IGARKIV'.

D 25.

See pp. D 14 to D 22.
c) Mainprogram 'AGGREG2'
This program performs a unit aggregation of selected variables from 'IGARKIV'
resp. 'INARKIV', using variable 013 on the second line resp. variable 004 on
the first line as aggregational variable. The Program specifically handles the
two first lines on 'IGARKIV' resp. the first line on 'INARKIV' and writes pre-
liminary the first line on every case in 'GO6ARKIV' resp. G7ARKIV' resp. 'N7AR-
KIV'., The first line has the following format:
Variable Variable name Source
number
— 001 1966 Comnune identification on OBARKIV or VARO13 or
1970 Comrune identification on NKARKIV VARO28 on
IDARKIV
002 1966 Comriune name on OBARKIV or VARO14 or
1970 Commune name on NKARKIV VARO2S on
IDARKIV
003 1966 Commmune name on OBARKIV or VARO15 or
1970 Comrmune name on NKARKIV, ciontinued VARO30 on
IDARKIV
004 1966 Commune name on OBARKIV or VARO16 or
1970 Commune name on NKARKIV VARO31l on
IDARKIV
005 Number o unit aggregations on IGARKIV Program
or INARKIV

Fortran Format (I7,2X,3R10,3X,17).

Update Decks

*AGGREGLl: Contains mainprogram 'AGGREGl' and subroutines 'IDENTIS',

'"IDFIND1', 'IDFORAN',

'UDSKRIV', 'IDFIND2', 'FIL3',

'DIFFERE', 'SORT',

“IGARKIV: Contains mainprogram 'IGARKIV' and subroutines 'SQG' and 'UDSKRIV'.

~JERAND: Contains subroutine 'ARAND'.

=0OBRAND: Contains subroutine 'BRAND'.

~KBRAND: Contains subroutine 'CRAND'.

- = TJEOBKB: Contains subroutine 'UNIABC'.

» AGGREG2: Contains mainprogram

'AGGREG2'.

D 26.

Files
(Files are listed in the following order on the program Cards)

a) Files in program 'AGGREG1':
TAPEl: Reads the sorted 'IDARKIV'
TAPE2: Writes the revised 'IDARKIV' for program 'IGARKIV'
TAPE3: Writes the revised 'IDARKIV'!' for program 'INARKIV'
TAPE4: Scratch file

OUTPUT: Writes normal print output from program execution

b) Files in program 'IGARKIV':
‘ (see p. D16)

c) Files in program 'AGGREG2':
TAPEl: Reads 'IGARKIV'
TAPE2: Writes aggregated version of 'IGARKIV'
TAPE3: Writes a control transcript of TAPE2

OUTPUT: Writes normal print output from program execution

Update Control Cards

Since the use of several mainprograms in the same job requires a corres-
ponding number of UPDATE rum, the UPDATE control cards must be divided into

a similar number of logical records, i.e. separated by 7/@/@ cards.
1. Update Control Card Deck for Mainprogram 'AGGREGL':
1)
~IDENT XXX (0)
XXX is any name identifyin¢ the following text line insertions
“INSERT AGGREG1.14 (0)
PROCENT=X

X = Per cent Population Deviance. An integer ranging from O to 100, If not

specified X has a default value of 5,
“INSERT AGGREG1.15 (0)
OBARKIV=1

If specified the program will control the 1966 commune structure, i.e.
variables 013 to 027 on 'ICARKIV'. If not specified, the program will con-
trol the 1970 commune structure, i.e. variables 028 to 042 on 'IDARKIV'.

“INSERT AGGREG1.16 (0)

OPSTIL=1

1) O = Optional. R = Required.

D 27.

If not specified variables on 'IDARKIV' 019 and 020, if variable 021 equals 2,
and variables 034 and 035, if variable 036 equals 2, will be set to zero., This
text line should be inserted for longitudinal files not including variables

from 1962 and later.
»INSERT AGGREG1.17 (0)
IF() 4,5

If specified, the user can select a subset of cases from 'IDARKIV'. If not
specified all cases from 'IDARKIV' will be entered in the program execution.
If the logical expression :nside the brackets is true the case in question
will be selected. The logical expression must refer to a value or value combi-
nations of one or more var:.ables in 'IDARKIV'. The variables are defined as

an integer array: VAR(42). If e.g. the logical expression is defined as (VAR
(8).LE.21.AND.VAR(9).GE.21) only those commune units will be selected having

information about 1921 local selection.
~COMPILE AGGREG1 (0) (®)

If the program is used completely in its standard version, i.e. without
“IDENT and one or more *“INSERT text lines, it is required to insert this

text line.

2. Update Control Card Deck for Mainprogram 'IGARKIV'.

See pp. D 17-21.

3. Update Control Card Deck or Mainprogram 'AGGREG2'.

» IDENT XXX (o)

XXX is any name identifying the following text line insertions.

~ INSERT AGGREG2.6 (R)
INTEGER VARA(X), VARB(X)

X = number of variables to be aggregated. Since the program automatically
handles the first and second line on 'IGARKIV', and the first line on 'IN-
ARKIV' only the variables in the original archive files to be aggregated

should be defined here.

~ INSERT AGGREG2.7 (R)
VARANT=X

X has been defined in prev:ious text line insertion

= INSERT AGGREG2.8 (R)
2 FORMAT()

Format for variables on 'IGARKIV' or'INARKIV' (TAPEl) to be unit aggregated
and written upon 'G6ARKIV'. 'G7ARKIV' or 'N7ARKIV'. The number of variable

D 28.

format specifications must equal X in former text line insertion. Notice, that the
two first lines on every case on 'IGARKIV' and the first line on 'INARKIV' are au-

tomatically read by the program.
“INSERT AGGREG2.9 (R)
10 FORMAT()

Format for aggregated variables written upon 'G6ARKIV', G7ARKIV' or 'N7ARKIV' (TAPE2).
The number of variable fornat specifications must equal X. Notice, that the first line
on every case on 'G6ARKIV', G7ARKIV' or 'N7ARKIV' is automatically written by the
program. See p. D 25.

" INSERT AGGREGZ2.10
INARKTIV=1

If specified, the program nust read from 'INARKIV' (TAPEl). If not specified, the
program must read from 'IGARKIV'.

" INSERT AGGREG2.12 (0)
KONTROL=0
If specified, no control transcript of 'G6ARKIV' will be written upon TAPE3.
~ INSERT AGGREG2.13 (0)
REWIND=0

If specified, TAPEl, if KONTROL is set to zero, and TAPE2 will not be rewound.

SORT /MERGE Control CARDS

In the following we will demonstrate the use of CDC Standard Program SORT/MERGE

called as a main program. The Program is called with the following control card:
SORTMRG, I=NN,O=MM.

The parameters are optional.. I reads SORT/MERGE directives, O writes print output
from program. Default values: I=INPUT, O=0UTPUT.

The program requires about 50,000 octal words. A smaller field length will result
in a lower efficiency during program execution,

The control card deck from which the program reads a number of user specified
directives is demonstrated in a standard versicn, For more special features, the

user must consult the manual:
SORT(Pl,Pg,P3)

Pl: Number of sort input files. The program can sort and merge up to 32 input

files,

D 25.

P2= Number of key fieclds. The parameter indicates the number of character
fields in the record determining the sequence of records in the output

file. 1 to 100 key fields can be specified.

P3= Number of characters in the record. Similar to P2 on RECORD control card.

See below.
FILE(Pl,S,B,,PQ,N)

P1= logical file name on input file to be sorted

P2= R file will be rewound and closed. = C File will be closed but not re-
wound.

FILE(Pl,O,B,,PZ,N)

P1= logical file name on sorted output file. The file must have been opened
before the SORTMR: control card using a REWIND,1fn., a REQUEST,1fn, *PF.

or a REQUEST,1fn,?K,XXX. control card.

P2= Similar to P2 in the former control card.

KEY(Pl,C,P2,P3)

Pl= A ascending sorting order. =D descending sorting order.

P2= the position of th= first character in the key field relative to the
first character in the record, counting from one.

P3= number of characters in the key field.

A maximum of 100 KEY control cards can be inserted. The file will be sorted
first according to the first KEY control card and then according to the se-
cond XEY control card, etc. The standard ascending sequence for integer cha-

racters are: blank, O, 1, 2, 3, 4, 5, 6, 7, 8, 9.
RECORD(I,PI,PQ)

P1= U The record consists of one text line. = F The record consists of

more than one text line.

P2= Number of characters in the record. If Pl = U then P2 = max. number of charac
ters in the text line. If Pl = F, then P2 = number of characters in the first
line plus a number of characters so that the total number of characters equal

the nearest higher multiple of ten. If the number of added characters are only
zero or one, ten more characters must be added. If e.g. the number of charac-
ters are 72, the number must be raised to 80. If e.g. the number of characters
are 79, the number must be raised to 90. An empty line contains 10 characters.
The same procedure is then applied to the following text line and finally the
total number of characters in each line are summed. The user must be very care-

fully in counting the total number of characters in an F record. If not the

sorting procedure will give totally misleading results.

Sequence of Logical Records for the Creation of 'G6ARKIV'.

This card must terminate a SORT/MERGE control card deck

SCOPE Control Cards
SORTMRG. IDARKIV to IDVARI1
IDVARI1 to IDVARIZ2

Program AGGREG1.
SORTMRG. IDVARIZ2
Program IGARKIV.
Program AGGREG2.

A Flow Chart of the

to IDVARI3

JEARKIV, OBARKIV, KBARKIV and IDVARI3 to IGARKIV
IGARKIV to G6ARKIV

Creaticn of the

'G6-ARCHIVE'.

JEARKIV=TAPE1)

(OBARKIV=TAFE2)

IDARKIV PROGRAM IDVARI1
(IDARKIV)| ™ SORT/NERGE:>'_"_7>'(IDVARIlzTAPEl)
JEARKIV OBARKIV KBARKIV

(XBARKIV=TAPE3)

IGARKIV

\A)7
<: PROGRAM

IGARKIV

(IGARKIV=TAPES)

IGARKIV=TAPE1)

v

@.I;AM\

AGGREG2

)

S~

|

G6ARKIV

G€ ARKIV=TAPE?2)

PROGRAM

AGGREG1

J

IDVARI2
IDVARI2=TAPE2)

)

——

PROGRAM
SORT /MERGE

.

IDVARI 3
(IDVARI 3=TAPE7)

30.

D 31.

SCOPE 3.3. Control Card Deck creating Standard Version of the 'GBARKIV',

XXXXXvCM1000009TQSOOoNTl. (SPECIFICATION OF USER"S JOB NAME)

ACCOUNToXosY,Z, (SPECIFICATION OF USER"S ACCOUNT CARD)
BIGTXT. GENERATION OF "GO6ARKIVH

RFL»100,

LIMITs1000,

RPACK 9 XXX 9% o XXX, (SPECIFICATION OF USER"S RPACK)
COMMENT. CREATION OF IDVARI1+IDVARI2 AND IDVAKRI3
RFLs1000,

REWINDs IDVARIL,

RFL+50000,

SORTMRG. SIORTING OF IDARKIV TO IDVARI]
RFL+35000,

UPDATE ¢+ P=PGARKIV,.D, AGGREG1 TO COMPILE FILE
RFL 947000,

FTN0I=COMPIL59R=00

RFL+77000.

REDUCE .

LGOys IDVARI1,IDVARI2, CREATION OF IDVARIZ
RFL+1000,

RtTURNQLGO'IDVARIIoTAPE3oTAPE4-

REWINDy IDVARIZ,

RFL+50000,

SORTMRG. SORTING OF IDVARIZ2 TO IDVARIZ
RFL+1000, ,

RETURNs IDVAKRIZ2.

HFL'IOO.

COMMENT. CREATION OF IGARKIV

KEQUEST 9 IGARKIVsPK ¢ XXX (SPECIFICATION OF USER"S RPACK)
RFL+2000.

ATTACH’RANDOM’RECAURANOOMIO'CY=20

RFL 935000,

-UPDATE sP=PGARKIVsD. IGARKIV TO COMPILE FILE
RFL 947000,

FTNQI=COMPILE9R=O.

RFEL9100000,

LOADsRANDOM,

REDUCE .
LGO’JEARKIVoOBARKIVoKBARKIV'IDVARI3OIGARKIV. CREATION OF IGARKIV
RFL+10000,

COPYSBF s TAPEQ,

RFL91000,
RETURNoLGOoTAPE49TAPESQTAPEO’TAPE99IDVARI3.
RFLOIOO.

COMMENT, AGGREGATION OF IGARKIV TO GG6ARKIV
REQUEST 9 GOARKIV 9PK ¢ XXX o (SPECIFICATION OF USER"S RPACK)
UPDATE s P=PGARKIVsD.AGGREG? TO COMPILE FILE

RFL 947000,

FINy I=COMPILEsR=0,

REDUCE.

LGOs IGARKIV,GO6ARKIV., CREATION OF G6ARKIV
RFL+10000.

COPYSBF s TAPE3.

REMOVE » IGARKIV.

7/8/9

SORT(1le1+250)

FILE(IDARKIVeSsBoesRoN)

FILE(IDVARI1909Bs sRoN)

KEY(A9Co8ly4)

RECORD (I 4F +250)

END

7/8/9 i o

#IDENT XONTKOL
#INSERT AGGREGl.15

O0BARKIV=1
7/8/9

SURT(19le250)
FILE(IDVAKIZ29SsBssReN)
FILE(IDVAKI3e09BesReN)
KEY(A9CoeBly4)
RECORD (I eF4250)
END
7/8/9
#IDENT KONTROL
#INSERT IGARKIV.B
INTEGER A(320) +AA(320) 4B (128)+HB(123)+sC(832)+CC(832)
#INSERT IGARKIV.9
INTEGER REGISTA(291500) sREGISTB(291120) +KEGISTC(241659)
#INSERT IGARKIV.10
IJEOBKB=]
#INSERT IGAKRKIV,11
PRUSA=S
PRUS3=?2
PRUSC=13
#INSERT IGARKIV.12
IA=256
Is=110
IC=796
*INSERT IGARKIV.13
NA=1500
NB=1120
NC=1655
#INSERT IGARKIV.14
IDARKIV=]
#INSERT JUERANDG1O
9 FORMAT(21742Xe3R1063X91117014(/91817)9/417)
#INSERT OBRAND.10O
14 FORMAT(6(1817e/)+217)
#INSERT KBRAND.10O
18 FORMAT(44(1817e/)e61T7)
*#INSERT 1JUEOBKB.10
9 FORMAT(2I7¢2Xe3R10¢3X91117914(/41817)9/417)
14 FORMAT(6(1BIT74/)9217)
18 FORMAT (44 (1817e/) 9417)
7/8/9
#IDENT KONTROL
#INSERT AGGREGZ.6
INTEGER VARA(520) +VARB(520)
*INSERT AGGREG2.7
VARANT =520
#INSERT AGGREGR2.8B
2 FORMAT (70Xe8I7914(/91817)0/9170/0TX91T170/95(181797) 92170/
ATX910I7949X9/9126Xe/9126X9/010I7956X9/9126Xe/9119X9176/ 0
BOI79H63X9/9126X0/9112X92170/e8I79T0X9/0126X0/9105X93179/
CTI7e77X9/9126X9/998X041T9/+9617984X9/9126Xe/991Xe517 9/
DSI7991X9/9126X0/084Xs61T79/9417998Xe/0126Xe/eTTXeTI79/ 0
E3179105Xe/0126X9/070X08I70/02179112Xe/9126X9/963X99176/4
F1I79119Xe/9126X9/956X910179/9126X0/9126X9/949XK9101797Xe/
Gl26X9/9126X0/9042X91017914X9/0126X9/9126X0/935X91017921Xe/
H126X9/0126Xe/+28X)
#INSERT AGGREGZ2.9
10 FORMAT(28(1817+/)91617)

6/1/8/9

(It is assumed, that PGARKIV, JEARKIV, OBARKIV, KBARKIV and IDARKIV are stored
on the RPACK} NOTICE: DO NEVER RETURN A RPACK FILE, ALL INFORMATION ON THE RPACK

DISC CAN BE LOST),

D 33.

D 6 The Creation of the GN-ARCHIVE'.

Program Feature

The creation of 'GNARKIV' is a rather complicated task involving a range

of program routines. The user, who is interested in a simultaneous use of data

from the communes before and after the 1970 Amalgamation Reform is recommended

first to read the purely verbal description on page 88 to 91 and then read the

technical description of how to create 'G6ARKIV' on page D 23 to D 32, because

the 'GNARKIV' is only an extension of the procedures involved in the creation

of

'G6ARKIV',

As an introducticn we will recall the stepwise file manipulation and

shortly consider the two mainprograms 'INARKIV' and 'GNARKIV' which have not

been discussed until now:

1)

4)

5)

6)

7)

The 'IDARKIV' is sortec according to variable 028 in ascending order using
the standard program SCRT/MERGE. See pp. D 28. to D 30. By this procedure
the old communes completely or primarily included in a given 1970 commune

are grouped together, (IDARKIV to IDVARI1)

Using the mainprogram 'AGGREGl' a number of 1970 communes are aggregated,
i.e. given the same identification and name, according to the user determi-
ned per cent population deviance., Default value 5. Two versions of 'IDVARI1'
are created, one for 'IGARKIV' (IDVARI2) and one for 'INARKIV' (IDVARI4).
(IDVARI1 to IDVARI2 and IDVARI4)

Owing to a number of identification alterations of variable 028 accomplished
under point 2, the 'IDVARI2' is sorted according to variable 028 in ascen-

ding order. (IDVARI2 to IDVARI3)

Using 'IDVARI3' as identification file, a version of 'IGARKIV' is created
setting IDARKIV = 2. See p. D 19. It means that the first and the third
line from 'IDVARI3' are printed on every case on 'IGARKIV'.

Using the mainprogram 'AGGREG2', caseg on 'IGARKIV' having identical values
on variable 013, corresponding to variable 028 on 'IDVARI3' are aggregated

(IGARKIV to G7ARKIV).

Owing to a number of identification alterations of variable 028 accomplished
under point 2, the 'IDVARI4', see p. D 24, is sorted according to variable
number 005 in ascending order. (IDVARI4 to IDVARIS)

Using 'IDVARIS' as identification file and data from 'NKARKIV' a version of
'INARKIV' is created. See below.

8) Using the mainprogram 'AGGREG2', setting INARKIV = 1, cases on 'INARKIV'
having identical values on variable number 005 from 'IDVARIS' are aggre-

gated. (INARKIV to N7ARKIV)

9) Using the mainprogram 'GNARKIV', see below the file 'G7ARKIV' and 'N7ARKIV'
are merged into a single archive file. (G7ARKIV and N7ARKIV to GNARKIV)

It appears from above, that we during the file manipulations are using

6 mainprograms:

a) Mainprogram SORT/MERGE. A SCOPE standard program. See p. D 28, to D 29.
b) Mainprogram 'AGGREGLl'. See pp. D 230 D24. and D 26. to D 27.

c) Mainprogram 'IGARKIV'. See pp. D 14 to D 22.

d) Mainprogram 'AGGREG2'. See pp. D 25 and D 2/ to D 28.

e) Mainprogram 'INARKIV'.

It is a program in structure identical to 'IGARKIV'. It merges the archive

‘NKARKIV' with the special edition of 'IDARKIV'. i.e. 'IDVARIS'.

£) Mainprogram 'GNARKIV'. This program merges the 'G7ARKIV' and the 'N7ARKIV!',
files both having the same number of cases and the same order of commune
identification numbers. The program automatically reads the first line of
each case on 'G7ARKIV' and 'N7ARKIV' and writes the first line of each case
on archive file 'GNARKIV':

Variable Variable name Type Source
number
001 19570 Commune Identification on I VAROO1 on
'G7ARKIV' and 'N7ARKIV! 'G7ARKIV!'
002 1970 Commurie name on 'G7ARKIV' and R VAROO2 on
'N7ARKIV' 'G7ARKIV!
003 1970 Commurie name. Continued R VAROO3 on
'G7ARKIV'
004 1970 Commur.e name. Continued. R VAROO4 on
'G7ARKIV'
005 Number of &aggregated commune cases I VAROOS5 on
from 'IGARKIV! 'G7ARKIV!
006 Number of zggregated commune cases I VAROOS5 on
from 'INARKIV! 'N7ARKIV'

Format (I7,2X,3R10,3X,2I7)

The first line is then fcllowed by the aggregated variables from 'G7ARKIV'

D 35.

on

the following lines and finally the aggregated variables from 'N7ARKIV'.

Update Decks

*AGGREG1: Contains mainprogram 'AGGREG1'
'SORT', 'IDFIND1', 'IDFORAN',
#[GARKIV: Contains mainprogram 'IGARKIV'
*JERAND: Contains subroutiné 'ARAND'
OBRAND : Contains subroutine 'BRAND'
'CRAND'
*IJEOBKB: Contains subrou:ine 'UNIARC'

KBRAND: Contains subroutine

“AGGREG2: Contains mainprogram 'AGGREG2'
"INARKIV: Contains mainprogram 'INARKIV'
*NKRAND: Contains subrouti.ne 'DRAND'
'UNID'
“{GNARKIV: Contains mainprogram 'GNARKIV'

~INK: Contains subroutine

Files
(Files are listed in the following order

a) files in program 'AGGREG1':
(see p. D 26)

b) files in program 'IGARKIV'

(see p. D 16.)

c) files in program 'AGGREG2':

(see p. D 26.)

d) files in program 'INARKIV':

TAPEl: Reads 'NKARKIV!'
TAPE2:
TAPE3:
TAPE4:

TAPES:

Reads special version of

Writes 'INARKIV!

scratch file

and subroutines 'IDENTIS', 'DIFFERE',
'UDSKRIV', 'IDFIND2', 'FIL3', and 'SLUT'.
and subroutines 'SQG' and 'UDSKRIV'.

and subroutines 'SQG' and 'UDSKRIV!',

on the Program Cards)

'"IDARKIV', i.e. 'IDVARIS'.

Writes control transcript of 'INARKIV'

OUTPUT: Writes normal print output from program execution

e) files in program 'GNARKIV':
TAPEl: Reads 'G7ARKIV!'
TAPE2: Reads 'N7ARKIV'
TAPE3: Writes 'GNARKIV'

TAPE4: Writes control transcript of 'GNARKIV'

OUTPUT: Writes normal print output from program execution

D 36.

Update and SORTMRG Control Cards

Since the use of several mainprograms in the same job requires a corres-
ponding number of UPDATE runs plus a number of SORTMRG runs, the UPDATE and the
SORTMRG control cards must be devided into a similar number of logical records,
i.e. separated by 7/@/@ cards. In this section the use of different control card

deck will be demonstrated:

1. SORTMRG Control Card Dsack:
See pp. D 28. to D 30,

2.‘Update Control Card Deck for program 'AGGREGL':
See pp. D 26. to D 27.

3. Update Control Card Deck for program 'IGARKIV':
See pp. D 17. tc D 21.

4. Update Control Card Deck for program 'AGGREG2':
See pp. D 27. to D 28.

5. Update Control Card Deck for program 'INARKIV':

“IDENT XXX (0)

XXX is any name identifying the following text line insertions

“INSERT INARKIV.4 (R)
INTEGER D(X)
X = nearest higher multiple of 64 from the number of variables to be read from

a case on 'NKARKIV'. See D 17.

~INSERT INARKIV.S (R)
INTEGER REGISTD(2,Y)
Y = number of cases in 'NKARKIV'. See p. D 17, to D 1§.

~INSERT INARKIV.6 (R)
PRUSD=Z
Z = X/64. See p. D 183.

“INSERT INARKIV.7 (R)
ID=XX
XX = number of variables to be read from a case on 'NKARKIV' and finally

written upon 'INARKIV'. See p. D 18. to D 19.

~INSERT INARKIV.S8 (R)
ND=Y
Y = number of cases on 'NKARKIV'. See p. D 19.

“INSERT INARKIV.10 (0)
KONTROL=0

If specified no control transcript of TAPE3 on TAPE4 will be written and

TAPE3 will not be rewound.

+INSERT INARKIV.1l
REWIND=0O
If specified TAPEl will nct be rewound

2 INSERT NXRAND.6
9 FORMAT()
Format on TAPEl, i.e. 'NKARKIV'

= INSERT INK.6
9 FORMAT()
Format for second to the last line on TAPE3, i.e. 'INARKI

D 37.

(0)

(R)

(R)

V!'. The first line

is autématically written by the program as a line from TAPE2. See p. D 24.

~ INSERT INK.12

IF() 29,20
If the logical expression inside the brackets is true, a
is written upon TAPE3 followed by the corresponding case

no case is written upon TLPE3. The variables to be specif

(©)

case from TAPE2
from TAPEl. If not,

ied in the logical

expression is an array VAR(8), corresponding to the 8 variables on TAPE2,

See p. D 2% If the text line is not specified, all cases

written on TAPE3.

6. Update Control Card Deck for Program 'GNARKIV'.

~ IDENT XXX

XXX is any name identifying the following text line inser

- INSERT GNARKIV.4

INTEGER VARA(X),VARB(Y)
number of variables or. TAPEl, i.e. 'G7ARKIV' apart fr
number of variables or. TAPE2, i.e. 'N7ARKIV' apart fr

Il

X
Y

0

= INSERT GNARKIV.5
1 FORMAT()
Format on TAPEl, i.e. 'G7ARKIV' from second to last line

» INSERT GNARKIV.6
2 FORMAT()
Format on TAPE2, i.e. 'N7ARKIV' from second to last line

~ INSERT GNARKIV.8
KONTROL=0
If specified no control transcript of TAPE3 will be writt

will not be rewound.

from TAPE2 will be

()

tions

om first line

om first line

(R)

on the case

(R)

on the case

(©)

en on TAPE4 and TAPE3

+INSERT GNARKIV.9

REWIND=0

(0)

If specified TAPEl and TAPE2 will not be rewound

Sequence of logical records for the creation of 'GNARKIV'

1. SCOPE Control Cards
2.S0RTMRG. IDARKIV to IDVARI1

3.

]
.

O o N oo b

10.

Program AGGREG1.
SORTMRG. IDVARIZ2
Program IGARKIV.
Program AGGREGZ2.
SORTMRG. IDVARI4
Program INARKIV.
Program AGGREG2.
Program GNARKIV.

IDVARI1 to IDVARI2 and IDVARI4

to IDVARI3

JEARKTV, OBARKIV, KBARKIV and IDVARI3 to IGARKIV
IGARKIV to G7ARKIV

to IDVARIS

NKARKV and IDVARI5 to INARKIV

INARK"V to N7ARKIV

G7ARK:V and N7ARKIV to GNARKIV

D 38.

Flow Chart of the Creation of the 'GN-ARCHIVE'.
IDARKIV PROGRAM ; IDVARI1 ‘
(IDARKIV) SORTMRG (IDVARI1=TAPE1) 4
IDVARI2
(IDVARI2=TAPE2)
JEARKIV
(JEARKIV=TAPE1) PROGRAM
SORTMRG
OBARKIV

(OBARKIV=TAP

E2)

o

PROGRAM
AGGREG1

D 39.

(IDVARI4=TAPE3)

IDVARI4

KBARKIV
(KBARKIV=TAP

E3)

IDVARI3
(IDVARI.3=TAPE7)

Y

PROGRAM
IGARKIV

\

(IGARKIV=TAPES)
IGARKIV
(IGARKIV=TAPE1)

1

PROGRAM
AGGREG?2

(G7ARKIV=TAPE2)
G7ARKIV
(G7ARKIV=TAPEL)

T~

NKARKIV

(NKARKIV=TAPE1)

PROGRAM
SORTMRG

h\\\>; PROGRAM

GNARKIV

(IDVARIS5=TAPE2)

IDVARIS

PROGRAM
INARKIV

,

(INARKIV=TAPE3)
INARKIV
(INARKIV=TAPE1)

GNARKIV

(GNARKIV=TAPE3)

N

PROGRAM
AGGREG2

y

(N7ARKIV=TAPE2
N7ARKIV
(N7ARKIV=TAPE2)

D 40.

SCOPE 3.3. Control Card Deck creating Standard Version of the 'GNARKIV!',

XXXXX9CM1000009T50009NT1ls (SPECIFICATION OF USER™S JOBNAML)

ACCOUNT eX9Y4Z, (SPECIFICATION OF USER"S ACCOUNT CARD)
BIGTXT, GENERATION OF “GNARKIV"

RFL+100.

LIMITe1000,

RPACK9sXXX9E9XXXe (SPECIFICATION OF USER'"S RPACK)

COMMENT, CREATION OF IDVARIl, IDVARIZ2s IOVARI3 AND IDVARI4
RFL+1000,

REWINDy IDVARI1,

RFL+50000,

SORTMRGe. SORTING OF IDARKIV TO IDVARI1

RFL+35000.

UPDATE+P=PGARKIVsDe AGGREG1l TO COMPILE FILE

KFL 947000,

FTINe[=COMPILEsR=0,

RFILe77000.

REDUCE,

LGOs IDVARI1+IDVARI2yIDVARI4, CREATION OF IDVARI2 AND IDVARIa
RFL91000,

RETURNsLGOs IDVARI1 9 TAPE,

REWINDs IDVARI3,.

RFL 50000,

SORTMRGe SORTING OF IDVARI2 TO IDVARI3

KFL+1000,

RETURNs IDVARIZ,

RFL'IOO.

COMMENT., CREATION OF IGARKIV

RFL+2000,.

‘REQUEST ¢ IGARKIVyPKoXXX o (SPECIFICATION OF USER"S RPACK)
ATTACHsRANDOMsRECAURANDOMIO CY=2.

KFEL+35000,

UPDATE «P=PGARKIVsD, IGARKIV TO COMPILE FILE

RFLo4«7000,

FTINeI=COMPILEsR=0,

RFL+100000,

LOADsRANDOM,

REDUCE _ .
LGOs JEARKIVsOBARKIVoKBARKIVsIDVARI3, IGAKKIV., CREATION OF IGARKIV
RFL+10000,

COPYSBF ¢ TAPES,

RFL91000.

KETURNsLGOs TAPEG s TAPES s TAPEGsTAPE9s IDVARI 3,

*FL 9100,

COMMENT, AGGREGATION OF IGARKIV TO G7ARKIV

KFL +35000,

UPDATE +P=PGARKIV+D,AGGREG2 TO COMPILE FILE

RFL+47000.

FINeI=COMPILEsR=0,

REDUCE.

LGOs IGARKIVsG7TARKIV. CREATION OG G7ARKIV

KFL+10000,

COPYSBF s TARPE3,

REMOVE s IGARKIV,

RETURNSLGO,TAPE3.

RFL91000,

REWINDs IDVARIS,

RFL+50000,

SORTMRG. SORTING OF IDVARI4 TO IDVARIS
KFL+1000,

RETURNs IDVARI%.

KFLs100.

COMMENT, CREATION OF IMARKIV

RFL+2000.

REwINDsRANDOM,

RFL 35000,

UPDATE +P=PGARKIVsD. INARKIV TO COMPILE FILE
RFL+47000,

FTINe I=COMPILEsR=0,

®FLy100000,

LOADsRANDOM,

REDUCE,

LGOsNKARKIVeIDVARIS, INARKIV, CKEATION OF INARKIV
KFL910000C,

CUPYSBF s TAPE %,

RFLs1000.

RETURNeLGOs IDVARISeTAPE4 s TAPES,

RFL’IOO.

COMMENT. AGGREGATION OF INARKIV TO N7ARKIV
WFL+35000,

UFDATE +P=PGARKIVsDs AGGREG2 TO COMPILE FILE
RFL 47000,

FTNe I=COMPILEsR=0,

REDUCE.

LGOs INARKIVINTARKIV, CREATION OF NT7ARKIV
KFL+10000,

COPYSBF ¢ TAPE3.

RETURNoLGOs INARKIVsTAPE3,

RFL9100.

‘CUMMENT. CREATION OF GNARKIV
REQUESTsGNARKIVIPK e XXX, (SPECIFICATION OF USER"“S RPACK)
RFL+35000.

UFDATE +P=PGARKIVsDs GNARKIV TO COMPILE FILE
RFL 947000,

FTNeI=COMPILEsR=0,

REDUCE .

LOOsG7ARKIVINTARKIVyGNARKIV. CREATION OF GNARKIV
RFL+10000,

COPYSBF o TAPE G,

7/8/9

SORT(1l91+250)

FILE(IDARKIVsSsBoeeReN)
FILECIDVARI1909BesRoeN)

KEY (AsCoel6]144)

RECORD (I 9F 4250)

END

7/8/9

#IDENT KONTROL

#COMPILE AGGREGI

7/8/9

SURT(191+250)

FILE(IDVARIZ9S9BoesRyN)
FILE(IDVARI3909BssRsN)

KEY(A9Cs16]194)

RECORD (I oF 9250)

END

7/8/9

D 42.

#IDENT KONTROL
*INSERT IGARKIV,.8
INTEGER A(320)+AA(320)4+8(128)4BB(128),C(832),CC(832)
*INSERT IGARKIV.9
INTEGER REGISTA(241500) yREGISTB(2+1120) sREGISTC(241655)
*INSERT IGARKIV.10
1JEO08KB=1
*INSERT IGARKIV.11
PRUSA=S
PRUSB=?
PRUSC=13
*INSERT IGARKIV.12
I1A=2%9
IB=110
IC=796
#INSERT IGARKIV.13
NA=1500
NB8=1120
NC=1655
*#INSERT IGARKIV.14
IDARK]IvV=2
#INSERT JERAND,10
9 FORMAT(2I792X93R1093Xe1117914(/91817)e/917)
#INSERT 0BRAND.10
14 FORMAT(6(1817+/7)+217)
INSERT KBRAND.10
18 FORMAT (44 (18179/) 9417)
#INSERT IJUEOBKB.10
9 FORMAT(217¢2X93R1093Xe11I7914(/91817)e/e1T)
14 FORMAT(6(181T7e/)9217)
18 FORMAT (44 (18174¢/)4417)
7/8/9
#IDENT KONTROL
- #INSERT AGGREGZ.6
INTEGER VARA(520) s VARB (520)
#INSERT AGGREG2.7
VARANT=520
#*INSERT AGGREG2.8
2 FORMAT (70X 9817914 (/91817)9/91T7e/9TXe1T717e/s5(1817e7/)92179/>
ATX91017949Xe/9126X0/9126X9/e1017956Xe/0126X9/9119X0179/
BOIT7963Xe/9126X9/9112X92170/981T7970XK9/9126Xe/9105Xe3179/
CTIT07TX0/0126X0/998Xe4IT 0/ 0617e84X9/9126Xe/991XeS5170/
DSI7991Xe/0126Xe/ 984X e6IT 9/ 0a1T998Xe/9126Xe/eTTXeT1T9/
E3I79105X0/9126Xe/9T0X98BIT79/021T0112%X0/e126Xe/963X%Xe9170/
F1lI79119Xe/0126Xe/956Xe10179/9126X9/9126X0/e49X91017e7X9/,
Gl26Xe/9126X9/042X91017914X0/0126X9/9126X9/e¢35X01017921Xe/
H126Xe/0126X9/+28X)
#INSERT AGGREGZ2.9
10 FORMAT (28(1817+/)+1617)
7/8/9 '
SORT(1s1971)
FILEC(IDVARI4+SeBesRoN)
FILEC(IDVARISsO9sBssReN)
KEY(A9C93704)
RECORD (1+Us71)
END

7/8/9

D 43.

*IDENT KONTROL
#INSERT INARKIV.4
INTEGER D(128)
#INSERT INARK]IV,.S
INTEGER REGISTC (2+278)
* INSERT INARKIV.6
PRUSD=?2
INSERT INARKIV,.7
ID=126
#INSERT INARKIV.8
ND=278
#INSERT NKRAND.6
9 FORMAT(6(181791),1817)
*INSERT INK,.6
9 FORMAT(6(1817,/)01817)
7/8/9
*IDENT KONTROL
#INSERT AGGKEG2.6
INTEGER VARA(123) yVARB (123)
#INSERT AGGREGR2.7
VARANT=123
#INSERT AGGOREGZ2.8H
2 FORMAT(21Xe1517+6(/, 1817))
#INSERT AGGREG2.9
10 FORMAT (6(1817+/)91517)
#INSERT AGGREG2.10
INARKIV=1
7/8/9

*IDENT KONTROL
®INSERT GNARKIV.4
INTEGER VARA(520) yVARB(123)
*INSERT GNARKIV.S
‘ 1 FORMAT(28(18179;)91617)
*INSERT GNARKIV, 6 .
l FORMAT(b(lSI?o/JolSI?)

6/7/8/9

(It is assumed, that PGARRIV, JEARKIV, OBARKIV, KBARKIV, NKARKIV and IDARKIV
are stored on the RPACK)

NOTICE: DO NEVER RETURN A FILE STORED ON A RPACK DISC. ALL FILES ON THE RPACK
CAN BE LOST.

